

# Fatal Post COVID mRNA-Vaccine Associated Cerebral Ischemia

The Neurohospitalist  
 2023, Vol. 13(2) 156–158  
 © The Author(s) 2022  
 Article reuse guidelines:  
[sagepub.com/journals-permissions](http://sagepub.com/journals-permissions)  
 DOI: 10.1177/1941874421136898  
[journals.sagepub.com/home/nho](http://journals.sagepub.com/home/nho)



Nadia McMillan, MD, PhD<sup>1</sup> , Harry J. Rosenberg, MD<sup>2</sup>, Matthew P. Anderson, MD, PhD<sup>2</sup>, Pankaj Pal, MD, PhD<sup>3</sup>, Kathryn Stephenson, MD<sup>3</sup>, and Corey R. Fehnel, MD, MPH<sup>1</sup>

## Abstract

**Background:** Venous thromboses have been linked to several COVID-19 vaccines, but there is limited information on the Moderna vaccine's effect on the risk of arterial thrombosis. Here we describe a case of post-Moderna COVID-19 vaccination arterial infarct with vaccine-associated diffuse cortical edema that was complicated by refractory intracranial hypertension.

**Case Summary:** 24 hrs after receiving her first dose of the Moderna COVID-19 vaccine, a 30-year-old female developed severe headache. Three weeks later she was admitted with subacute headache and confusion. Imaging initially showed scattered cortical thrombosis with an elevated opening pressure on lumbar puncture. An external ventricular drain was placed, but she continued to have elevated intracranial pressure. Ultimately, she required a hemicraniectomy, but intractable cerebral edema resulted in her death. Pathology was consistent with thrombosis and associated inflammatory response. **Conclusion:** Though correlational, her medical team surmised that the mRNA vaccine may have contributed to this presentation. The side effects of COVID-19 infection and vaccination are still incompletely understood. Though complications are rare, clinicians should be aware of presentations like this one.

## Keywords

COVID-19, Moderna vaccine, cerebral edema, neurology, stroke

## Consent

Family consent to publish this case was obtained both verbally and written. The conversation was documented in our institutions electronic medical record.

## Case Presentation

A 30-year-old woman with prior asymptomatic COVID-19 infection three months earlier developed severe, throbbing bi-frontal headache 24-hours after first dose of the mRNA COVID-19 vaccine (Moderna). The headaches were atypical, prompting evaluation by her primary care provider and three emergency department visits where vital signs and neurologic examinations were normal. She had a history of class I obesity, but no prior headaches. Symptomatic management for presumed migraine did not alleviate the headaches. Three weeks after vaccination, she developed blurred vision and confusion, prompting further emergency evaluation. At this time, imaging of her head was first obtained. Computed tomography (CT) of her head was normal, and lumbar puncture revealed an opening pressure of 27cmH20 with lymphocytosis (Table 1). A brain MRI with contrast showed multiple punctate areas of diffusion restriction in occipital

regions but no evidence of large arterial or venous occlusion. There was no evidence of abnormal enhancement (Figure 1A). Upon transfer to this hospital, the patient endorsed a bifrontal headache with photophobia. Complete blood count was without leukocytosis, extended chemistry panel, and toxicology screening were normal. Repeat lumbar puncture revealed an opening pressure of 50mmH20 and rising lymphocytic pleocytosis (Table 1). Broad spectrum antimicrobial coverage was started. Her mental status acutely worsened later that evening, and she was noted to have a new left hemiparesis. Vitals were notable for fever and tachycardia. CT/CT angiography with perfusion were without major

<sup>1</sup>Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA

<sup>2</sup>Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA

<sup>3</sup>Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA

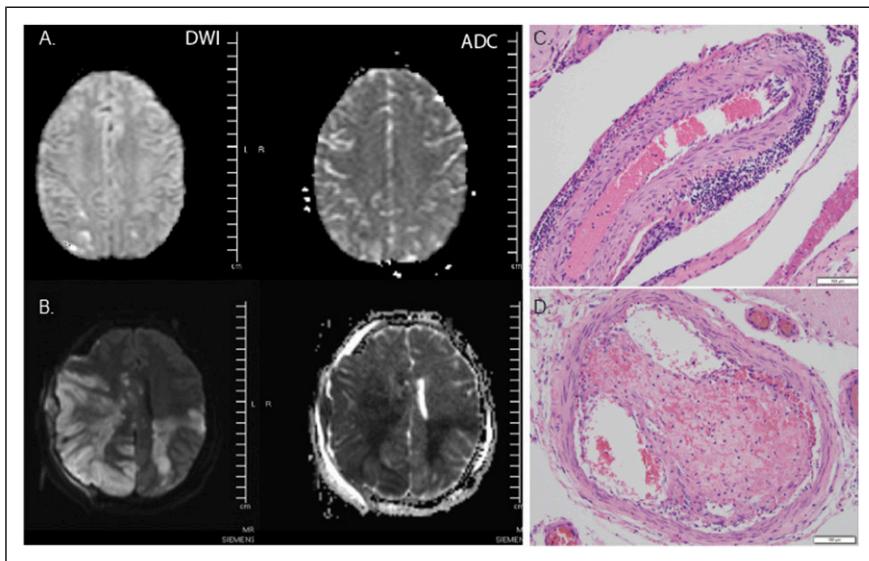
## Corresponding Author:

Nadia McMillan, MD, PhD, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215-5491, USA.

Email: [Nmcmill1@bidmc.harvard.edu](mailto:Nmcmill1@bidmc.harvard.edu)

**Table I.** Lab Test Analysis.

| Cerebrospinal Fluid (CSF) Profiles: | TNC (cells/µl) | RBC (cells/µl) | Lymphocytes(%)        | Protein (md/dl) | Glucose (mg/dl) | OP (mmH20) |
|-------------------------------------|----------------|----------------|-----------------------|-----------------|-----------------|------------|
| CSF exam #1 via LP                  | 143            | 243            | 96                    | 67              | 57              | 27         |
| CSF exam #2 via LP (24-hrs later)   | 238            | 5              | 96                    | 110             | 57              | 52         |
| CSF exam #1 via EVD (24-hrs later)  | 69             | 1900           | 94                    | 35              | 113             |            |
| <b>CSF Studies:</b>                 |                | <b>Results</b> | <b>Serum Studies:</b> |                 | <b>Results:</b> |            |
| Arbovirus Ab IgM and IgG            |                | Negative       | HBsAg                 |                 | Neg             |            |
| EBV Virus DNA, PCR                  |                | Negative       | HBsAb                 |                 | Pos             |            |
| Enterovirus RNA, Qualitative RT-PCR |                | Negative       | HBcAb                 |                 | Neg             |            |
| Meningitis/Encephalitis Panel       |                | Negative       | HCV Ab                |                 | Neg             |            |
| HIV-1 RNA, PCR                      |                | Negative       | Lyme Ab               |                 | Neg             |            |
| HSV 1&2 Quantitative PCR            |                | Negative       | EBV PCR               |                 | Neg             |            |
| CMV DNA, Qualitative PCR            |                | Negative       | HIV                   |                 | Neg             |            |
| MOG Ab                              |                | Negative       | VZV                   |                 | Neg             |            |
|                                     |                |                | ANA                   |                 | Neg             |            |
|                                     |                |                | ANCA                  |                 | Neg             |            |
|                                     |                |                | CRP                   |                 | 5               |            |
|                                     |                |                | C3                    |                 | 123             |            |
|                                     |                |                | C4                    |                 | 29              |            |
|                                     |                |                | Cryoglobulin          |                 | Neg             |            |
|                                     |                |                | anti-dsDNA Ab         |                 | Neg             |            |
|                                     |                |                | anti-Smith Ab         |                 | Neg             |            |
|                                     |                |                | anti-RNP              |                 | Neg             |            |
|                                     |                |                | MOG Ab                |                 | Neg             |            |


CSF Analysis: TNC indicates Total Nucleated Cells; RBC, Red Blood Cells; LP lumbar puncture; EVD External Ventricular Drain; OP opening pressure; Ab antibody; Ig immune globulin; Arborvirus panel includes: IgG and IgM for Calif Virus (LaCrosse), East Equine Encephalitis (EEE), St. Louis Encephalitis, West Equine Encephalitis; EBV Epstein Barr virus; PCR polymerase chain reaction; Meningitis Encephalitis Panel includes: Escherichia Coli, Haemophilus Influenzae, Listeria monocytogenes, Neisseria Meningitidis, Streptococcus Agalactiae, Streptococcus Pneumoniae, Cytomegalovirus, Enterovirus, Herpes Simplex Virus 1, Herpes Simplex Virus 2, Human Herpesvirus 6, Human Parechovirus, Varicella Zoster Virus, Cryptococcus neoformans and gattii. HSV herpes simplex virus; CMV cytomegalovirus; MOG Myelin Oligodendrocyte Glycoprotein antibodies are associated with acute disseminated encephalomyelitis (ADEM). Serum Analysis: ANA antinuclear antibody, ANCA antineutrophil cytoplasmic antibody, C3 complement component 3, C4 complement component 4, CRP c-reactive protein, HBsAg hepatitis B surface antigen, HbsAb antibody to hepatitis b surface antigen, HbcAb hepatitis b core antibody, HCV Ab hepatitis c virus antibody, EBV epstein barr virus, HIV human immunodeficiency virus, VZV varicella zoster virus, dsDNA anti double stranded DNA antibody, anti-RNP anti-ribonucleoprotein antibody.

vessel occlusion and no evidence for low pressure/post-LP herniation. Labs were notable for mild thrombocytopenia (119 K/u) and elevated D-dimer (3457) with a negative platelet factor 4 antibody (PF4). Given elevated ICP, hyposmolar therapy was given and an external ventricular drain (EVD) was placed. Studies to evaluate for infectious etiology, primary angiitis of the CNS, secondary CNS vasculitis, or one of its mimics were sent (Table 1). CSF cultures and PCR testing returned negative (Table 1), and she was started on high dose intravenous methylprednisolone followed by intravenous immune globulin. Intracranial pressure remained refractory to maximal medical management including deep sedation, paralysis and hypothermia, prompting a right decompressive hemicraniectomy. Subsequent brain MRI showed extensive bilateral subacute infarcts without evidence of infection or cerebral venous sinus thrombosis (CVST) (Figure 1B). Upper extremity and bilateral lower extremity ultrasounds to evaluate for systemic thromboses were negative for deep vein thrombosis. The patient expired from refractory cerebral edema. Brain autopsy showed

leptomeningeal, perivascular and focal intraparenchymal infiltrates of CD8 and CD4-positive T-cells in association with intravascular thrombi (Figure 1C and D). There was no CVST or demyelination. Fungal and bacterial stains were negative.

## Discussion

The diffuse endothelial damage and vessel wall inflammation seen on pathology suggested an underlying pro-thrombotic state and T cell inflammatory response. A number of case reports have demonstrated cerebral venous sinus thrombosis and systemic thromboses post-COVID-19 vaccination.<sup>1-3</sup> While this patient did not have CVST, CVST has been previously associated with COVID-19 vaccination<sup>1-3</sup> where thrombocytopenia is frequent and termed ‘vaccine-induced prothrombotic immune thrombocytopenia’ (VIPIT). VIPIT is similar to heparin-induced thrombocytopenia (HIT) with antibodies directed against platelet factor 4 (PF4).<sup>1,4,5</sup> Mild thrombocytopenia occurred in this case, but PF4 antibodies



**Figure 1.** Imaging **A:** Representative axial MRI brain images on day of admission. **B:** Eight days after admission, left panels represent diffusion weighted (DWI) sequences and right apparent diffusion coefficient (ADC) images. **C.** Hematoxylin and eosin (H&E)-stained section of leptomeningeal vessel with lymphocytic cuff **D.** H&E-stained section of leptomeningeal blood vessel with intraluminal organizing thrombus. Scale bars =100um.

were negative. The arterial infarct in this case is likely related to a pro-thrombotic state but with a different underlying mechanism to that seen in venous thrombosis. Due to the large volume of infarction, the patient was not started on anticoagulation after extensive discussion of the risks vs potential benefit.

In summary, administration of COVID-19 vaccine was considered a possible cause of the extensive multifocal arterial thromboses with associated inflammatory response and elevated intracranial pressure given the temporal association. The mechanism for initial elevation in intracranial pressure is not known but may relate to cerebral autoregulatory changes in the setting of cortical microvascular thrombosis. Review of the medical literature and vaccine adverse event reporting system (VAERS) produced no similar cases, suggesting the condition is extremely rare, but a potentially fatal vaccine-associated event.

#### Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

#### Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

#### ORCID iDs

Nadia McMillan  <https://orcid.org/0000-0003-0423-0471>

Corey R. Fehnel  <https://orcid.org/0000-0003-1726-5809>

#### References

1. Sangli S, Virani A, Cheronis N, et al. Thrombosis with thrombocytopenia after the messenger RNA-1273 vaccine. *Ann Intern Med.* 2021;174:1480-1482. doi:10.7326/L21-0244.
2. Hunter PR. Thrombosis after covid-19 vaccination. *BMJ.* 2021; 373:n958. doi:10.1136/bmj.n958.
3. Al-Mayhani T, Saber S, Subbs MJ, et al. Ischaemic stroke as a presenting feature of ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. *J Neurol Neurosurg Psychiatry.* 2021;92:1247-1248. doi:10.1136/jnnp-2021-326984.
4. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrie PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. *N Engl J Med.* 2021;384:2092-2101. doi: 10.1056/NEJMoa2104840.
5. Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. *N Engl J Med.* 2021;384:2124-2130. doi:10.1056/NEJMoa2104882.