
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.



Disponible en ligne sur  
**ScienceDirect**  
[www.sciencedirect.com](http://www.sciencedirect.com)

Elsevier Masson France  
**EM|consulte**  
[www.em-consulte.com](http://www.em-consulte.com)



ELSEVIER

## LETTER TO THE EDITOR

### Frosted branch angiitis after booster vaccination with BNT162b2

*L'angéite givrée après booster vaccination avec BNT162b2*

#### Case report

The current and on-going coronavirus disease 2019 (COVID-19) pandemic has challenged the medical community and raised countless questions on how to end the exponential spread since its beginning in 2020. Silver linings were seen with the development of an effective vaccination against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2020. Currently, 6 vaccines from different pharmaceutical companies were granted the emergency use authorization from the World Health Organization [1].

Worldwide, more than 12 billion doses of COVID-19 vaccinations have been administered, thereby probably saving millions of lives. So far, some case reports of retinal severe adverse events (SAE) after the first or second dose of mRNA vaccinations against COVID-19 have either been published or presented at conferences. These include branch retinal arterial occlusion, combined arterial and venous occlusion, venous stasis retinopathy, central serous chorioretinopathy and acute macular neuroretinopathy [2].

A 40-year-old Caucasian man was referred to the tertiary medical retina unit at Clinic Landstraße (Vienna Healthcare Group) due to acute vision loss to hand movement and vitreous hemorrhage in his right eye. The patient reported that he received the booster vaccination with BNT162b2 against SARS-CoV-2 three weeks earlier. His medical history comprised a recurrent uveitis intermedia (HLA B-51, B-5) with re-activation of vitreous and anterior segment inflammation in the same eye shortly after the first BNT162b2 vaccination this year. His previous medical and physical history were unremarkable for any B-51 specific symptoms or systemic conditions including Behcet's disease. The first episode subsided under topical and systemic corticosteroids, while the second vaccination was administered 3 weeks later and passed uneventfully under therapy. Urgent vitrectomy was performed on the day of admission and scattered intraretinal hemorrhages, vascular sheathing and abruptly terminating arterial and venous vessels consistent with a frosted branch angiitis were seen intraoperatively. Consequently, prophylactic laser treatment for retinal ischemia and silicon oil tamponade to avoid secondary retinal detachment were performed (Fig. 1A). Postoperatively, the wide-field fluorescein angiography showed extensive

arteriovenous leakage of the remaining vascular trunks as well as retinal non-perfusion areas also pictured as broad inner retinal ischaemia and cystoid macular edema in optical coherence tomography (Fig. 1B–D). Vitreous and blood samples were negative for any causative infectious disease including Human Immunodeficiency Virus, Herpes Virus polymerase chain reaction, Toxoplasmosis, Tuberculosis, Treponema pallidum or any autoimmune disorder such as hemopathies, systemic lupus erythematoses or chronic inflammatory bowel syndromes. A reaction to the booster dose is suspected to be the origin of this retinal SAE. His vision improved minimally to counting fingers, while fundus examination showed persistent intraretinal hemorrhages along the inferior retinal arcade 4 weeks later.

To our best knowledge, this is the first case of a frosted branch angiitis after the booster vaccination with BNT162b2. The number of reported retinal SAE in the literature after the first or second dose of any COVID-19 vaccination is rising with increasing numbers of fully vaccinated people (Table 1) [2].

The exact underlying mechanism of vaccine-induced autoimmune activations is still in the dark; however, two theories have been postulated: an infection by the still active, but weakened virus strain is deemed possible regarding live attenuated vaccines such as measles-mumps-rubella immunization. The second mechanism might be caused by adjuvants, for example aluminium salts, which are used in inactivated or subunit or conjugate vaccines. These autoinflammatory and autoimmune conditions induced by adjuvants are better known as the Shoenfeld syndrome [3]. The BNT162b2 vaccine uses lipid nanoparticle encapsulated mRNA, encoding for a full-length spike protein of SARS-CoV-2. After injection, high levels of antigen-specific antibodies are being produced and a T helper 1 cell response is induced. Similarities between human proteins and the SARS-CoV-2 glycoprotein are being postulated and might be responsible for a cross-reactivity, triggering or exacerbating autoimmune conditions [4]. Since the presented case had a history of uveitis intermedia, a severe reaction of the disease due to the booster vaccination with BNT162b2 might be causative, especially since the disease onset was within 3 weeks after the third injection and uveitis activation subsequent to a COVID-19 vaccination has been described before.

Lin et al. reviewed the latest literature on ophthalmic AE summarizing events after COVID-19 vaccinations [1]. They found several cases of COVID-19 vaccine-related uveitis, as well as other autoimmune conditions, such as Vogt-Koyanagi-Harada disease, bilateral acute zonal occult outer retinopathy and arteritic anterior ischemic optic neuropathy. However, the number of unreported cases of newly

**Table 1** Number of published cases of retinal severe adverse events following COVID-19 vaccination.

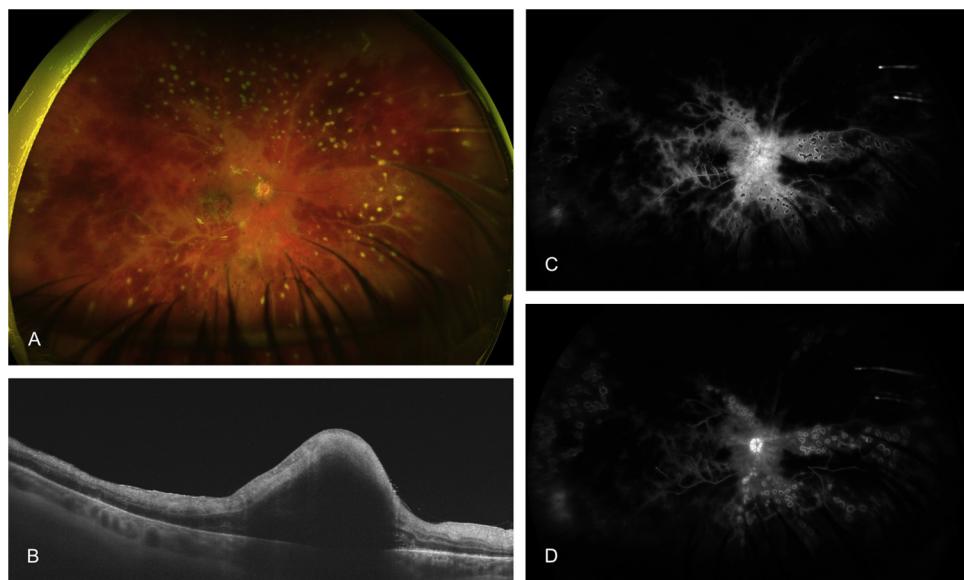
| No. | Authors<br>Journal                                                       | Year | Type             | Eye | Sex | Age <sup>a</sup> | Vaccine   | Dose | Interval <sup>b</sup> | Symptoms                                 | Diagnosis  |
|-----|--------------------------------------------------------------------------|------|------------------|-----|-----|------------------|-----------|------|-----------------------|------------------------------------------|------------|
| 1   | Mambretti et al.<br><i>Ocular Immunology and Inflammation</i>            | 2021 | Case report      |     | F   | 22               | ChAdOx1   | NA   | 2                     | Paracentral scotoma                      | AMN        |
| 2   |                                                                          |      |                  |     | F   | 28               | ChAdOx1   | NA   | 2                     | Paracentral scotoma                      | AMN        |
| 3   | Bøhler et al.<br><i>Eye</i>                                              | 2021 | Letter to editor | L   | F   | 27               | ChAdOx1   | 1st  | 2                     | Paracentral scotoma                      | AMN        |
| 4   | Gabka et al.<br><i>Ophthalmologe</i>                                     | 2021 | Case report      | B   | F   | 20               | ChAdOx1   | NA   | 1                     | Flickering                               | AMN        |
| 5   | Book et al.<br><i>JAMA Ophthalmology</i>                                 | 2021 | Images           | B   | F   | 21               | ChAdOx1   | 1st  | 3                     | Scotoma                                  | AMN        |
| 6   | Michel et al.<br><i>Journal of Ophthalmic Inflammation and Infection</i> | 2021 | Case report      | L   | F   | 21               | ChAdOx1   | 1st  | 2                     | Bilateral paracentral scotomas           | AMN        |
| 7   | Chen et al.                                                              | 2021 | Letter to editor | L   | F   | 21               | BNT162b2  | 1st  | 3                     | Central scotoma                          | AMN        |
| 8   | Fowler et al.<br><i>American Journal of Ophthalmology</i>                | 2021 | Case report      | R   | M   | 33               | BNT162b2  | NA   | 3                     | Blurred vision, metamorphopsia           | CSCR       |
| 9   | Mudie et al.<br><i>Ocular Immunology and Inflammation</i>                | 2021 | Case report      |     | F   | 43               | BNT162b2  | 2nd  | 3                     | Decreased VA                             | Panuveitis |
| 10  | Goyal et al.<br><i>Ocular Immunology and Inflammation</i>                | 2021 | Case report      | B   | M   | 34               | ChAdOx1   | 2nd  | 7                     | Visual loss                              | MFC        |
| 11  | Maleki et al.<br><i>Journal of Ophthalmic and Vision Research</i>        | 2021 | Case report      | L   | F   | 33               | mRNA-1273 | 2nd  | 10                    | Nasal field defect, flashes in both eyes | AZOOR      |

Table 1 (Continued)

| No. | Authors<br>Journal                                                           | Year | Type        | Eye | Sex | Age <sup>a</sup> | Vaccine   | Dose | Interval <sup>b</sup> | Symptoms                                       | Diagnosis                    |
|-----|------------------------------------------------------------------------------|------|-------------|-----|-----|------------------|-----------|------|-----------------------|------------------------------------------------|------------------------------|
| 12  | Papasavvas et al.<br><i>Journal of Ophthalmic Inflammation and Infection</i> | 2021 | Case report | B   | F   | 43               | BNT162b2  | 2nd  | 42                    | Decreased VA, photophobia, eye tenderness      | VKH                          |
| 13  | Rabinovitch et al.<br><i>Retina</i>                                          | 2021 | Article     | L   | M   | 39               | BNT162b2  | 2nd  | 5                     | Blurred vision, visual field defect, photopsia | MEWDS                        |
| 14  |                                                                              |      |             | L   | F   | 28               | BNT162b2  | 2nd  | 30                    | Blurred vision, visual field defect, photopsia | MEWDS                        |
| 15  | Bolletta et al.<br><i>Journal of Clinical Medicine</i>                       | 2021 | Article     | L   | M   | 53               | BNT162b2  | 1st  | 8                     | Blurred vision                                 | Toxoplasma retinochoroiditis |
| 16  |                                                                              |      |             | L   | F   | 58               | BNT162b2  | 2nd  | 7                     | Blurred vision                                 | Toxoplasma retinochoroiditis |
| 17  |                                                                              |      |             | R   | F   | 52               | Ad26.COV2 | 1st  | 7                     | Blurred vision                                 | Toxoplasma                   |
| 18  |                                                                              |      |             | B   | F   | 44               | BNT162b2  | 2nd  | 12                    | Blurred vision                                 | VKH                          |
| 19  |                                                                              |      |             | B   | F   | 58               | BNT162b2  | 2nd  | 5                     | Blurred vision                                 | VKH                          |
| 20  |                                                                              |      |             | B   | F   | 49               | ChAdOx1   | 1st  | 7                     | Blurred vision                                 | Pars planitis                |
| 21  |                                                                              |      |             | B   | F   | 18               | BNT162b2  | 2nd  | 14                    | Blurred vision                                 | Pars planitis                |
| 22  |                                                                              |      |             | B   | M   | 41               | mRNA-1273 | 2nd  | 5                     | Blurred vision                                 | Retinal vasculitis           |
| 23  |                                                                              |      |             | R   | F   | 59               | BNT162b2  | 1st  | 10                    | Blurred vision                                 | Retinal vasculitis           |
| 24  |                                                                              |      |             | B   | M   | 42               | BNT162b2  | 2nd  | 30                    | Redness, blurred vision                        | Panuveitis                   |
| 25  |                                                                              |      |             | L   | M   | 53               | BNT162b2  | 2nd  | 28                    | Decreased VA, visual field defect              | MEWDS                        |
| 26  |                                                                              |      |             | R   | F   | 18               | BNT162b2  | 1st  | 4                     | Blurred vision, visual field defect            | MEWDS                        |

(Continued)

| No. | Authors<br>Journal                                                                              | Year | Type         | Eye | Sex | Age <sup>a</sup> | Vaccine    | Dose | Interval <sup>b</sup> | Symptoms                                              | Diagnosis               |
|-----|-------------------------------------------------------------------------------------------------|------|--------------|-----|-----|------------------|------------|------|-----------------------|-------------------------------------------------------|-------------------------|
| 27  |                                                                                                 |      |              | R   | M   | 48               | BNT162b2   | 1st  | 7                     | Decreased VA                                          | MEWDS                   |
| 28  |                                                                                                 |      |              | B   | F   | 25               | ChAdOx1    | 1st  | 2                     | Visual field defect                                   | AMN                     |
| 29  |                                                                                                 |      |              | R   | M   | 39               | mRNA-1273  | 2nd  | 30                    | Decreased VA                                          | CRVO                    |
| 30  |                                                                                                 |      |              | L   | F   | 53               | ChAdOx1    | 1st  | 2                     | Decreased VA                                          | BRVO                    |
| 31  |                                                                                                 |      |              | L   | F   | 61               | ChAdOx1    | 2nd  | 2                     | Decreased VA                                          | BRVO                    |
| 32  |                                                                                                 |      |              | L   | M   | 50               | BNT162b2   | 2nd  | 3                     | Decreased VA                                          | BRVO                    |
| 33  |                                                                                                 |      |              | L   | M   | 48               | BNT162b2   | 2nd  | 23                    | Blurred vision                                        | BRVO                    |
| 34  |                                                                                                 |      |              | R   | F   | 47               | BNT162b2   | 1st  | 8                     | Decreased VA                                          | Uveitic CNV             |
| 35  |                                                                                                 |      |              | R   | F   | 68               | BNT162b2   | 2nd  | 10                    | Decreased VA                                          | Uveitic CNV             |
| 36  |                                                                                                 |      |              | R   | F   | 66               | BNT162b2   | 2nd  | 1                     | Blurred vision                                        | Myopic CNV              |
| 37  |                                                                                                 |      |              | B   | M   | 41               | BNT162b2   | 2nd  | 13                    | Blurred vision                                        | CSCR                    |
| 38  | Pichi et al.<br><i>JAMA Ophthalmology</i>                                                       | 2021 | Brief report | L   |     |                  | BBIBP-CorV | 1st  | 5                     | Acute vision loss                                     | AMN                     |
| 39  |                                                                                                 |      |              |     |     |                  | BBIBP-CorV | 1st  | NA                    | Acute vision loss                                     | AMN                     |
| 40  |                                                                                                 |      |              | L   |     |                  | BBIBP-CorV | 1st  | NA                    | Blurred vision & paracentral scotoma                  | PAMM                    |
| 41  |                                                                                                 |      |              |     |     |                  | BBIBP-CorV | 1st  | NA                    |                                                       |                         |
| 42  | Bayas et al.<br><i>Lancet</i>                                                                   | 2021 | Case report  | B   | F   | 55               | ChAdOx1    | 1st  | 10                    | Conjunctival congestion, retro-orbital pain, diplopia | CSCR<br>Vein thrombosis |
| 43  | Panovska-Stavridis et al.<br><i>Mediterranean Journal of Hematology and Infectious Diseases</i> | 2021 | Case report  | L   | F   | 29               | ChAdOx1    | 1st  | 10                    | Blurred vision                                        | Vein thrombosis         |


(Continued)

| No. | Authors<br>Journal                                          | Year | Type             | Eye | Sex | Age <sup>a</sup> | Vaccine  | Dose | Interval <sup>b</sup> | Symptoms                          | Diagnosis              |
|-----|-------------------------------------------------------------|------|------------------|-----|-----|------------------|----------|------|-----------------------|-----------------------------------|------------------------|
| 44  | Smith et al.<br><i>Ocular Immunology and Inflammation</i>   | 2022 | Letter to editor | L   | F   | 15               | BNT162b2 | 2nd  | 14                    | Blurred vision and black floaters | MEWDS                  |
| 45  |                                                             |      |                  | R   | F   | 21               | BNT162b2 | 2nd  | 21                    | Blurred vision and headaches      | MEWDS                  |
| 46  | Delbarre et al.<br><i>Journal français d'ophthalmologie</i> | 2022 | Letter to editor | L   | M   | 38               | BNT162b2 | 1st  | 7                     | Blurred Vision                    | CSCR                   |
| 47  | Mechleb et al.<br><i>Journal français d'ophthalmologie</i>  | 2022 | Article          | B   | F   | 32               | BNT162b2 | 1st  | 5                     | Painless loss of vision           | CSCR                   |
| 48  | Janhart et al.<br><i>Journal français d'ophthalmologie</i>  | 2022 | Article          | R   | M   | 35               | BNT162b2 | 1st  | 2                     | Visual disturbances               | CSCR                   |
| 49  |                                                             |      |                  | R   | M   | 45               | BNT162b2 | 1st  |                       | Blurred vision                    | CSCR                   |
| 50  |                                                             |      |                  | R   | F   | 65               | BNT162b2 | 1st  | 2                     | Visual disturbances               | CSCR                   |
| 51  |                                                             |      |                  | R   | M   | 44               | BNT162b2 | 1st  | 10                    | Blurred vision                    | CSCR                   |
| 52  | Haas et al.                                                 | 2022 | Letter to editor | R   | M   | 40               | BNT162B2 | 3rd  | 21                    | Acute vision loss                 | Frosted branch angitis |

NA: not announced; F: female; AMN: acute macular neuroretinopathy; L: left eye; B: bilateral; R: right eye; M: male; VA: visual acuity; CSCR: central serous chorioretinopathy; MFC: multifocal choroiditis; AZOOR: acute zonal outer occult retinopathy; VKH: Vogt-Koyanagi-Harada disease; MEWDS: multiple evanescent white dot syndrome; CRVO: central retinal vein occlusion; BRVO: branch retinal vein occlusion; CNV: choroidal neovascularization; PAMM: paracentral acute middle maculopathy.

<sup>a</sup> In years.

<sup>b</sup> In days between vaccination and onset of symptoms.



**Figure 1.** Composite of a frosted branch angiitis one day after surgery. A. Widefield digital fundus photography of the right eye showing confluent retinal hemorrhage, sheathed major vessels, abruptly terminating vascular endings and panretinal sectorial laser treatment. B. Swept source-optical coherence tomography b-scan of the central retina through the foveal umbo with broad inner retinal hyperreflectivity as an expression of intracellular edema as well as a prominent cystoid macular edema of the outer retina due to acute ischemia. C. Early widefield fluorescein angiography demonstrating the frosted branch appearance of the remaining central arteriovenous perfusion next to extensive blockage caused by retinal hemorrhage or ischemia of the inner retinal capillaries. D. Late fluorescent leakage of the optic disc and major vascular trunks with marked staining of peripheral laser spots.

diagnosed or re-activated ocular autoimmune diseases is still unknown and almost impossible to estimate. Most of these patients are seen in a private practice in case of an acute event, where a mild course of the disease can be perfectly managed, thereby remaining without further notice to scientific reports. We hereby added this case to the already published literature of retinal SAE after any COVID-19 vaccination (Table 1). Patients with a severe autoimmune disease are commonly treated with local or systemic immunosuppressive agents, such as corticosteroids or tumor necrosis factor- $\alpha$ -blocker. The aim of any vaccination, however, is the stimulation of the recipient's immune system, so that antibodies against certain antigens are being produced to protect against a disease. Hence, the question arises, whether patients with a known autoimmune disease should take corticosteroids as preventive measurements before receiving a COVID-19 vaccination. On the other hand, it is unclear if the vaccination has the intended effect on patients under immunosuppression [5]. Supervising clinicians should keep a possible re-activation of an autoimmune disease after vaccination in mind and balance advantages and disadvantages of a prophylactic immunosuppressive treatment individually.

In conclusion, the COVID-19 vaccination has brought about substantial benefits to the management of the current pandemic. Its safety profile is considered similar to that of other viral vaccines already being administered for decades. Clinicians should be aware that the booster COVID-19 vaccination can evoke a retinal SAE even in the absence of an earlier SAE. A meticulous uveitis screening for any signs of activity should be performed on patients with a known history of an autoimmune disease before immunization, especially with mRNA vaccines. Having said

that, if the vaccination is causative or just coincidental remains a challenge for the scientific society at the moment.

#### Submission declaration and verification

The authors have not published or submitted any related papers from this study and the paper was not presented at a meeting before.

#### Disclosure of interest

The authors declare that they have no competing interest.

#### References

- [1] Lin TPH, Ko CN, Zheng K, Lai KHW, Wong RLM, Lee A, et al. COVID-19: update on its ocular involvements, and complications from its treatments and vaccinations. *Asia Pac J Ophthalmol* 2021;10:521–9, <http://dx.doi.org/10.1097/APO.0000000000000453>.
- [2] Nyankerh CNA, Boateng AK, Appah M. Ocular complications after COVID-19 vaccination, vaccine adverse event reporting system. *Vaccines* 2022;10:941, <http://dx.doi.org/10.3390/vaccines10060941>.
- [3] Cunningham ET, Moorthy RS, Fraunfelder FW, Zierhut M. Vaccine-associated uveitis. *Ocul Immunol Inflamm* 2019;27:517–20, <http://dx.doi.org/10.1080/09273948.2019.1626188>.
- [4] Maleki A, Look-Why S, Manhapra A, Foster CS. COVID-19 recombinant mRNA vaccines and serious ocular inflammatory side effects: real or coincidence? *J Ophthalmic Vis Res* 2021;16:490–501, <http://dx.doi.org/10.18502/jovr.v16i3.9443>.
- [5] Chau CY, Chow LL, Siddharth Sridhar, Shih KC. Ophthalmological considerations for COVID-19 vaccination in patients with inflammatory eye diseases and autoimmune disorders.

Ophthalmol Ther 2021;10:201–9, <http://dx.doi.org/10.1007/s40123-021-00338-1>.

A.-M. Haas<sup>a,b</sup>, M. Stattin<sup>a,b,c,\*</sup>,  
T. Barisani-Asenbauer<sup>d</sup>, K. Krepler<sup>a,b</sup>,  
S. Ansari-Shahrezaei<sup>a,b,e,f</sup>

<sup>a</sup> Vienna Healthcare Group, Department of Ophthalmology, Clinic Landstraße, Vienna, Austria

<sup>b</sup> Karl Landsteiner Institute for Retinal Research and Imaging, Juchgasse, 25, 1030 Vienna, Austria

<sup>c</sup> Department of Ophthalmology and Optometry, Medical University of Innsbruck, Anichstraße, 35, 6020 Innsbruck, Austria

<sup>d</sup> Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse, 15, 1090 Vienna, Austria

<sup>e</sup> Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz, 1, A-8036 Graz, Austria

<sup>f</sup> Medical School, Sigmund-Freud University Vienna, Campus Prater Freudplatz, 3, 1020 Vienna, Austria

\* Corresponding author.

E-mail addresses:

[anna-maria.haas@gesundheitsverbund.at](mailto:anna-maria.haas@gesundheitsverbund.at) (A.-M. Haas),

[martin.stattin@gesundheitsverbund.at](mailto:martin.stattin@gesundheitsverbund.at) (M. Stattin), [talin.barisani@meduniwien.ac.at](mailto:talin.barisani@meduniwien.ac.at) (T. Barisani-Asenbauer),

[katharina.krepler@gesundheitsverbund.at](mailto:katharina.krepler@gesundheitsverbund.at) (K. Krepler),

[siamak.ansarishahrezaei@gesundheitsverbund.at](mailto:siamak.ansarishahrezaei@gesundheitsverbund.at) (S. Ansari-Shahrezaei)

<https://doi.org/10.1016/j.jfo.2022.12.023>

0181-5512/© 2023 Elsevier Masson SAS. All rights reserved.